Quantifying the uncertainty introduced by internal climate variability in projections of Canadian crop production

Author:

Qian BudongORCID,Jing Qi,Smith Ward,Grant Brian,Cannon Alex JORCID,Zhang Xuebin

Abstract

Abstract Internal climate variability (ICV) is one of the major sources of uncertainty in climate projections, yet it is seldom quantified for projections of crop production. Our study focuses on quantifying the uncertainty due to ICV in projections of crop productions in Canada. We utilize climate scenarios from two large ensembles (LEs, CanESM2-LE and CanRCM4-LE with 25 members each) as inputs to the crop models in the Decision Support System for Agrotechnology Transfer. We simulate crop yields for canola, maize and spring wheat under the future climates of four global warming levels. The coefficient of variation (CV) of the projected crop production across the LE members is used to quantify the uncertainty related to ICV and this is compared with the CVs generated using the 20 GCMs in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Crop production in Canada could increase with global warming, e.g. spring wheat production could increase by up to 21% at the warming level of 3.0 °C. The projections often produce larger uncertainty associated with the GCMs than from ICV at all warming levels above 2.0 °C. The results from an asymptotic test for the equality of CVs show a significant difference in CVs of projections of canola production between CanESM2-LE/CanRCM4-LE and CMIP5 for the warming level of 3.0 °C. However, the test results do not indicate a significant difference among the ensembles at all four warming levels for maize and spring wheat. The uncertainty due to ICV is often comparable to that associated with GCMs at the warming level of 1.5 °C, e.g. a CV of 6.0 and 6.4% for CanESM2-LE and CanRCM4-LE and 6.6% for CMIP5 in the projections of spring wheat production. We conclude there is a need to account for uncertainty related to ICV in projections of Canadian crop production, especially at lower warming levels.

Funder

Agriculture and Agri-Food Canada

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3