Diverse estimates of annual maxima daily precipitation in 22 state-of-the-art quasi-global land observation datasets

Author:

Bador MargotORCID,Alexander Lisa VORCID,Contractor SteefanORCID,Roca RemyORCID

Abstract

Abstract Observational evidence of precipitation extremes is vital to better understand how these events might change in a future warmer climate. Over the terrestrial regions of a quasi-global domain, we assess the representation of annual maxima of daily precipitation (Rx1day) in 22 observational products gridded at 1° × 1° resolution and clustered into four categories: station-based in situ, satellite observations with or without a correction to rain gauges, and reanalyses (5, 8, 4 and 5 datasets, respectively). We also evaluate the interproduct spread across the ensemble and within the four clusters, as a measure of observational uncertainty. We find that reanalyses present a heterogeneous representation of Rx1day in particular over the tropics, and their interproduct spread is the highest compared to any other cluster. Extreme precipitation in satellite data broadly compares well with in situ-based data. We find a general better agreement with in situ-based observations and less interproduct spread for the satellite products with a correction to rain gauges compared to the uncorrected products. Given the level of uncertainties associated with the estimation of Rx1day in the observations, none of the datasets can be thought of as the best estimate. Our recommendation is to avoid using reanalyses as observational evidence and to consider in situ and satellite data (the corrected version preferably) in an ensemble of products for a better estimation of precipitation extremes and their observational uncertainties. Based on this we choose a subsample of 10 datasets to reduce the interproduct spread in both the representation of Rx1day and its timing throughout the year, compared to all 22 datasets. We emphasize that the recommendations and selection of datasets given here may not be relevant for different precipitation indices, and other grid resolutions and time scales.

Funder

CNES Megha-Tropiques program

Australian Research Council (ARC) Discovery Project

ARC Centre of Excellence for Climate Extremes

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3