Abstract
Abstract
Global industrialization and urbanization processes enabled a diverse cement production boom over the past three decades, as cement is the most important building construction material. Consequently, the cement industry is the second-largest industrial CO2 emitter (∼25% of global industrial CO2 emissions) globally. In this study, the Global Cement Emission Database, which encompasses anthropogenic CO2 emissions of individual production units worldwide for 1990–2019, was developed. A recently developed unit-level China Cement Emission Database was then applied to override China’s data and the combination of two databases is used to reveal the unit characteristics of CO2 emissions and ages for global cement plants, assess large disparities in national and regional CO2 emissions, growth rates and developmental stages from 1990–2019, and identify key emerging countries of carbon emissions and commitment. This study finds that globally, CO2 emissions from the cement industry have increased from 0.86 Gt in 1990 to 2.46 Gt in 2019 (increasing by 186%). More importantly, the large CO2 emissions and the striking growth rates from those emerging countries, including most of the developing countries in the Asia region and the Middle East and Africa region, are clearly identified. For example, the Middle East and Africa, including mostly developing or underdeveloped countries, only represented 0.07 Gt CO2 in 1990 (8.4% of the total), in contrast to 0.26 Gt (10.4% of the total) CO2 in 2019, which is a 4.5% average growth rate during 1990–2019. Further, the intensive expansion of large and new facilities since 2005 in Asia and the Middle East and Africa has resulted in heavy commitment (90.1% of global commitment in 2019), and mitigation threats in the future considering their increasing emissions (the national annual growth rate can be up to >80%) and growing infrastructure construction (∼50% of clinker capacity operating ⩽10 years). Our results highlight the cement industry’s development and young infrastructure in emerging economies; thus, future increasing cement demand and corresponding carbon commitment would pose great challenges to future decarbonization and climate change mitigation.
Funder
National Natural Science Foundation of China
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Reference37 articles.
1. Global CO2 emissions from cement production, 1928–2017;Andrew;Earth. Syst. Sci. Data,2018
2. Global CO2 emissions from cement production, 1928–2018;Andrew;Earth Syst. Sci. Data,2019
3. Global carbon dioxide emissions from fossil fuel consumption and cement production;Boden,2014
4. Commitment accounting of CO2 emissions;Davis;Environ. Res. Lett.,2014
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献