A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries

Author:

Chen Cuihong,Xu Ruochong,Tong DanORCID,Qin Xinying,Cheng Jing,Liu Jun,Zheng BoORCID,Yan Liu,Zhang Qiang

Abstract

Abstract Global industrialization and urbanization processes enabled a diverse cement production boom over the past three decades, as cement is the most important building construction material. Consequently, the cement industry is the second-largest industrial CO2 emitter (∼25% of global industrial CO2 emissions) globally. In this study, the Global Cement Emission Database, which encompasses anthropogenic CO2 emissions of individual production units worldwide for 1990–2019, was developed. A recently developed unit-level China Cement Emission Database was then applied to override China’s data and the combination of two databases is used to reveal the unit characteristics of CO2 emissions and ages for global cement plants, assess large disparities in national and regional CO2 emissions, growth rates and developmental stages from 1990–2019, and identify key emerging countries of carbon emissions and commitment. This study finds that globally, CO2 emissions from the cement industry have increased from 0.86 Gt in 1990 to 2.46 Gt in 2019 (increasing by 186%). More importantly, the large CO2 emissions and the striking growth rates from those emerging countries, including most of the developing countries in the Asia region and the Middle East and Africa region, are clearly identified. For example, the Middle East and Africa, including mostly developing or underdeveloped countries, only represented 0.07 Gt CO2 in 1990 (8.4% of the total), in contrast to 0.26 Gt (10.4% of the total) CO2 in 2019, which is a 4.5% average growth rate during 1990–2019. Further, the intensive expansion of large and new facilities since 2005 in Asia and the Middle East and Africa has resulted in heavy commitment (90.1% of global commitment in 2019), and mitigation threats in the future considering their increasing emissions (the national annual growth rate can be up to >80%) and growing infrastructure construction (∼50% of clinker capacity operating ⩽10 years). Our results highlight the cement industry’s development and young infrastructure in emerging economies; thus, future increasing cement demand and corresponding carbon commitment would pose great challenges to future decarbonization and climate change mitigation.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference37 articles.

1. Global CO2 emissions from cement production, 1928–2017;Andrew;Earth. Syst. Sci. Data,2018

2. Global CO2 emissions from cement production, 1928–2018;Andrew;Earth Syst. Sci. Data,2019

3. Global carbon dioxide emissions from fossil fuel consumption and cement production;Boden,2014

4. Commitment accounting of CO2 emissions;Davis;Environ. Res. Lett.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3