Inconsistent recognition of uncertainty in studies of climate change impacts on forests

Author:

Petr M,Vacchiano G,Thom D,Mairota P,Kautz M,Goncalves L M S,Yousefpour R,Kaloudis S,Reyer C P O

Abstract

Abstract Background. Uncertainty about climate change impacts on forests can hinder mitigation and adaptation actions. Scientific enquiry typically involves assessments of uncertainties, yet different uncertainty components emerge in different studies. Consequently, inconsistent understanding of uncertainty among different climate impact studies (from the impact analysis to implementing solutions) can be an additional reason for delaying action. In this review we (a) expanded existing uncertainty assessment frameworks into one harmonised framework for characterizing uncertainty, (b) used this framework to identify and classify uncertainties in climate change impacts studies on forests, and (c) summarised the uncertainty assessment methods applied in those studies. Methods. We systematically reviewed climate change impact studies published between 1994 and 2016. We separated these studies into those generating information about climate change impacts on forests using models –‘modelling studies’, and those that used this information to design management actions—‘decision-making studies’. We classified uncertainty across three dimensions: nature, level, and location, which can be further categorised into specific uncertainty types. Results. We found that different uncertainties prevail in modelling versus decision-making studies. Epistemic uncertainty is the most common nature of uncertainty covered by both types of studies, whereas ambiguity plays a pronounced role only in decision-making studies. Modelling studies equally investigate all levels of uncertainty, whereas decision-making studies mainly address scenario uncertainty and recognised ignorance. Finally, the main location of uncertainty for both modelling and decision-making studies is within the driving forces—representing, e.g. socioeconomic or policy changes. The most frequently used methods to assess uncertainty are expert elicitation, sensitivity and scenario analysis, but a full suite of methods exists that seems currently underutilized. Discussion & Synthesis. The misalignment of uncertainty types addressed by modelling and decision-making studies may complicate adaptation actions early in the implementation pathway. Furthermore, these differences can be a potential barrier for communicating research findings to decision-makers.

Funder

Forestry Commission

Bundesministerium für Bildung und Forschung

European Cooperation in Science and Technology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3