Abstract
Abstract
As offshore wind power is continuously integrated into the electric power systems in around the world, it is critical to understand its variability. Weather regimes (WRs) can provide meteorological explanations for fluctuations in wind power. Instead of relying on traditional large-scale circulation WRs, this study focuses on assessing the dependency of wind resources on WRs in the tailored region clustered based on the finer spatial scale. For this purpose, we have applied self-organizing map algorithm to cluster atmospheric circulations over the South China Sea (SCS) and characterized wind resources for the classified WRs. Results show that WRs at mesoscale can effectively capture weather systems driving wind power production variability, especially on multi-day timescale. Capacity factor reconstruction during four seasons illustrates that WRs highly influence most areas in winter and southern part of SCS in summer, and WRs can serve as a critical source of predicting the potential of wind resources. In addition, we further qualify the wind power intermittency and complementarity under different WRs, which have not been assessed associated with WRs. During WRs with changeable atmosphere conditions, the high complementarity over coastal areas can reduce the impact of intermittency on wind power generation. The proposed approach is able to be implemented in any region and may benefit wind resource evaluation and characterization.
Funder
National Natural Science Foundation of China
the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, the Fundamental Research Funds for the Central Universities
Shenzhen Science and Technology Program
High Performance Computing Center of Nanjing University
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献