Increasing heat risk in China’s urban agglomerations

Author:

Zhang GuweiORCID,Zeng Gang,Liang Xin-ZhongORCID,Huang Cunrui

Abstract

Abstract A heat danger day is defined as an extreme when the heat stress index (a combined temperature and humidity measure) exceeding 41 °C, warranting public heat alerts. This study assesses future heat risk (i.e. heat danger days times the population at risk) based on the latest Coupled Model Intercomparison Project phase 6 projections. In recent decades (1995–2014) China’s urban agglomerations (Beijing-Tianjin-Hebei, Yangtze River Delta, Middle Yangtze River, Chongqing-Chengdu, and Pearl River Delta (PRD)) experienced no more than three heat danger days per year, but this number is projected to increase to 3–13 days during the population explosion period (2041–2060) under the high-emission shared socioeconomic pathways (SSP3-7.0 and SSP5-8.5). This increase will result in approximately 260 million people in these agglomerations facing more than three heat danger days annually, accounting for 19% of the total population of China, and will double the current level of overall heat risk. During the period 2081–2100, there will be 8–67 heat danger days per year, 60%–90% of the urban agglomerations will exceed the current baseline number, and nearly 310 million people (39% of the total China population) will be exposed to the danger, with the overall heat risk exceeding 18 times the present level. The greatest risk is projected in the PRD region with 67 heat danger days to occur annually under SSP5-8.5. With 65 million people (68% of the total population) experiencing increased heat danger days, the overall heat risk in the region will swell by a factor of 50. Conversely, under the low-emission pathways (SSP1-2.6 and SSP2-4.5), the annual heat danger days will remain similar to the present level or increase slightly. The result indicates the need to develop strategic plans to avoid the increased heat risk of urban agglomerations under high emission-population pathways.

Funder

National Key Research and Development Program of China

U.S. National Science Foundation Innovations at the Nexus of Food, Energy and Water Systems

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3