Mortality-based damages per ton due to the on-road mobile sector in the Northeastern and Mid-Atlantic U.S. by region, vehicle class and precursor

Author:

Arter Calvin A,Buonocore JonathanORCID,Chang Charles,Arunachalam SaravananORCID

Abstract

Abstract On-road vehicular emissions contribute to the formation of fine particulate matter and ozone which can lead to increased adverse health outcomes near the emission source and downwind. In this study, we present a transportation-specific modeling platform utilizing the community multiscale air quality model (CMAQ) with the decoupled direct method (DDM) to estimate the air quality and health impacts of on-road vehicular emissions from five vehicles classes; light-duty autos, light-duty trucks (LDT), medium-duty trucks, heavy-duty trucks (HDT), and buses (BUS), on PM2.5 and O3 concentrations at a 12 × 12 kilometer scale for 12 states and Washington D.C. as well as four large metropolitan statistical areas in the Northeast and Mid-Atlantic U.S. in 2016. CMAQ-DDM allows for the quantification of sensitivities from individual precursor emissions (NO X , SO2, NH3, volatile organic compounds, and PM2.5) in each state to pollution levels and health effects in downwind states. In the region we considered, LDT are responsible for the most PM2.5-attributable premature mortalities at 1234 with 46% and 26% of those mortalities from directly emitted primary particulate matter and NH3, respectively; and O3-attributable premature mortalities at 1129 with 80% of those mortalities from NO X emissions. Based on a detailed source-receptor matrix of sensitivities with subsequent monetization of damages that we computed, we find that the largest damages-per-ton estimate is approximately $4 million per ton of directly emitted primary particulate matter from BUS in the New York-Newark-Jersey City metropolitan statistical area. We find that on-road vehicular NH3 emissions are the second largest contributor to PM2.5 concentrations and health impacts in the study region, and that reducing 1 ton of NH3 emissions from LDT is ∼75 times and from HDT is ∼90 times greater in terms of damages reductions than a 1 ton reduction of NO X . By quantifying the impacts by each combination of source region, vehicle class, and emissions precursor this study allows for a comprehensive understanding of the largest vehicular sources of air quality-related premature mortalities in a heavily populated part of the U.S. and can inform future policies aimed at reducing those impacts.

Funder

Georgetown Climate Center

Barr Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference53 articles.

1. Healthcare cost and utilization project (HCUP),2020

2. A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015;Anenberg,2019

3. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets;Anenberg;Nature,2017

4. Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system;Baek,2018

5. Ozone and short-term mortality in 95 U.S. urban communities, 1987–2000;Bell;JAMA,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3