Machine learning based parameter sensitivity of regional climate models—a case study of the WRF model for heat extremes over Southeast Australia

Author:

Reddy P JyoteeshkumarORCID,Chinta SandeepORCID,Matear RichardORCID,Taylor JohnORCID,Baki HarishORCID,Thatcher MarcusORCID,Kala JatinORCID,Sharples JasonORCID

Abstract

Abstract Heatwaves and bushfires cause substantial impacts on society and ecosystems across the globe. Accurate information of heat extremes is needed to support the development of actionable mitigation and adaptation strategies. Regional climate models are commonly used to better understand the dynamics of these events. These models have very large input parameter sets, and the parameters within the physics schemes substantially influence the model’s performance. However, parameter sensitivity analysis (SA) of regional models for heat extremes is largely unexplored. Here, we focus on the southeast Australian region, one of the global hotspots of heat extremes. In southeast Australia Weather Research and Forecasting (WRF) model is the widely used regional model to simulate extreme weather events across the region. Hence in this study, we focus on the sensitivity of WRF model parameters to surface meteorological variables such as temperature, relative humidity, and wind speed during two extreme heat events over southeast Australia. Due to the presence of multiple parameters and their complex relationship with output variables, a machine learning (ML) surrogate-based global SA method is considered for the SA. The ML surrogate-based Sobol SA is used to identify the sensitivity of 24 adjustable parameters in seven different physics schemes of the WRF model. Results show that out of these 24, only three parameters, namely the scattering tuning parameter, multiplier of saturated soil water content, and profile shape exponent in the momentum diffusivity coefficient, are important for the considered meteorological variables. These SA results are consistent for the two different extreme heat events. Further, we investigated the physical significance of sensitive parameters. This study’s results will help in further optimising WRF parameters to improve model simulation.

Funder

Australian Climate Service

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3