Integrating multi-source remote sensing data for mapping boreal forest canopy height and species in interior Alaska in support of radar modeling

Author:

Zhao Yu-HuanORCID,Bakian-Dogaheh Kazem,Whitcomb Jane,Chen Richard H,Yi Yonghong,Kimball John S,Moghaddam Mahta

Abstract

Abstract Vegetation information is essential for analyzing aboveground biomass and understanding subsurface characteristics, such as root biomass, soil organic matter, and soil moisture conditions. In this study, we mapped boreal forest canopy height (FCH) and forest species (FS) distributions in the Delta Junction region of interior Alaska, by integrating multi-source remote sensing observations within a machine learning framework based on the extreme gradient boosting technique. Model inputs included multi-frequency (C-/L-/P-band) SAR observations from Sentinel-1, UAVSAR (Uninhabited Aerial Vehicle SAR) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface), and Sentinel-2 optical reflectance data. LVIS (Land Vegetation and Ice Sensor) LiDAR measurements (RH98) and Tanana Valley State Forest timber inventory data were used as respective canopy height and species ground truth data. The combination of multi-source datasets produced the best model performance (RMSE 1.62 m for FCH, and 84.27% overall FS classification accuracy) over other models developed from single source observations. The resulting FCH and FS maps using multi-source datasets were derived at 30 m spatial resolution and showed favorable agreement with plot level field measurements from the Forest Inventory and Analysis record. The model results also captured characteristic differences in stand structure between dominant species and from post-fire vegetation succession. Our results show the potential of multi-source remote sensing observations, including low frequency microwave sensors, for monitoring boreal forest complexity and changes due to global warming.

Funder

National Aeronautics and Space Administration

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3