CO2 fertilization of crops offsets yield losses due to future surface ozone damage and climate change

Author:

Leung FelixORCID,Sitch StephenORCID,Tai Amos P KORCID,Wiltshire Andrew JORCID,Gornall Jemma L,Folberth Gerd AORCID,Unger NadineORCID

Abstract

Abstract Tropospheric ozone (O3) is harmful to plant productivity and negatively impacts crop yields. O3 concentrations are projected to decrease globally in the optimistic Representative Concentration Pathway of 2.6 W m–2 (RCP2.6) but increase globally following the high-emission scenario under the RCP8.5, with substantial implications for global food security. The damaging effect of O3 on future crop yield is affected by CO2 fertilization and climate change, and their interactions for RCP scenarios have yet to be quantified. In this study, we used the Joint UK Land Environment Simulator modified to include crops (JULES-crop) to quantify the impacts, and relative importance of present-day and future O3, CO2 concentration and meteorology on crop production at the regional scale until 2100 following RCP2.6 and RCP8.5 scenarios. We focus on eight major crop-producing regions that cover the production of wheat, soybean, maize, and rice. Our results show that CO2 alone has the largest effect on regional yields, followed by climate and O3. However, the CO2 fertilization effect is offset by the negative impact of tropospheric O3 in regions with high O3 concentrations, such as South Asia and China. Simulated crop yields in 2050 were compared with Food and Agriculture Organisation (FAO) statistics to investigate the differences between a socioeconomic and a biophysical process-based approach. Results showed that FAO estimates are closer to our JULES-crop RCP8.5 scenario. This study demonstrates that air pollution could be the biggest threat to future food production and highlights an urgent policy need to mitigate the threat of climate change and O3 pollution on food security.

Funder

Met Office Hadley Centre Climate Programme funded by BEIS and Defra

University of Exeter Joint Centre for Environmental Sustainability & Resilience

NERC CASE studentship

EU Horizon 2020 CRESCENDO

Research Sustainability of Major RGC Funding Schemes CUHK

Vice-Chancellor’s Discretionary Fund of The Chinese University of Hong Kong

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3