Potentially underestimated gas flaring activities—a new approach to detect combustion using machine learning and NASA’s Black Marble product suite

Author:

Chakraborty SrijaORCID,Oda TomohiroORCID,Kalb Virginia L,Wang Zhuosen,Román Miguel O

Abstract

Abstract Monitoring changes in greenhouse gas (GHG) emission is critical for assessing climate mitigation efforts towards the Paris Agreement goal. A crucial aspect of science-based GHG monitoring is to provide objective information for quality assurance and uncertainty assessment of the reported emissions. Emission estimates from combustion events (gas flaring and biomass burning) are often calculated based on activity data (AD) from satellite observations, such as those detected from the visible infrared imaging radiometer suite (VIIRS) onboard the Suomi-NPP and NOAA-20 satellites. These estimates are often incorporated into carbon models for calculating emissions and removals. Consequently, errors and uncertainties associated with AD propagate into these models and impact emission estimates. Deriving uncertainty of AD is therefore crucial for transparency of emission estimates but remains a challenge due to the lack of evaluation data or alternate estimates. This work proposes a new approach using machine learning (ML) for combustion detection from NASA’s Black Marble product suite and explores the assessment of potential uncertainties through comparison with existing detections. We jointly characterize combustion using thermal and light emission signals, with the latter improving detection of probable weaker combustion with less distinct thermal signatures. Being methodologically independent, the differences in ML-derived estimates with existing approaches can indicate the potential uncertainties in detection. The approach was applied to detect gas flares over the Eagle Ford Shale, Texas. We analyzed the spatio-temporal variations in detections and found that approximately 79.04% and 72.14% of the light emission-based detections are missed by ML-derived detections from VIIRS thermal bands and existing datasets, respectively. This improvement in combustion detection and scope for uncertainty assessment is essential for comprehensive monitoring of resulting emissions and we discuss the steps for extending this globally.

Funder

NASA’s Terra, Aqua, Suomi-NPP, and NOAA-20 Program

NASA Postdoctoral Program

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference61 articles.

1. Emission factors for open and domestic biomass burning for use in atmospheric models;Akagi;Atmos. Chem. Phys.,2011

2. Measurements of methane emissions at natural gas production sites in the United States;Allen;Proc. Natl Acad. Sci.,2013

3. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example;Andres;Atmos. Chem. Phys.,2016

4. Autoencoders, unsupervised learning, and deep architectures;Baldi,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3