Causes of increased dissolved inorganic carbon in the subsurface layers in the western shelfbreak and high latitudes basin in the Arctic Pacific sector

Author:

Chu Gangzhi,Luo Xiaofan,Zheng Zijia,Zhao Wei,Wei Hao

Abstract

Abstract The expansion of dissolved inorganic carbon (DIC)-rich water carried by the Pacific inflow creates a DIC maximum layer and exerts important influences on ocean acidification in the subsurface Arctic Ocean. This study analyzed shifts in the DIC distribution of the subsurface Arctic Ocean during 1998–2015 through hindcast simulation using a three-dimensional ocean-sea ice-biogeochemical model. For this purpose, the study was divided into two time periods (1998–2007 and 2008–2015). The results showed that the lower boundary layer of the Pacific Winter Water, defined as an isopycnal of 27 kg m−3, became deeper by ∼50 m in the central Canada Basin and expanded northward during 2008–2015 relative to 1998–2007. Accordingly, the subsurface DIC maximum layer deepened and expanded northwards into the Makarov Basin at high latitudes around 85° N. During 2008–2015, DIC concentrations, averaged over a 50–250 m water column, increased significantly in the Chukchi-East Siberian Shelfbreak and Makarov Basin. The DIC increase over the shelfbreak is mainly attributable to increased local biological degradation and the transportation of DIC-rich water from the Chukchi Shelf through Barrow Canyon. Estimates of the DIC budget indicated that advection controlled the increase in DIC content in the Makarov Basin during 2008–2015. This is attributed to the shift of the ocean circulation pattern, in which the ocean current along the Chukchi-East Siberian Slope to the Makarov Basin became stronger during 2008–2015, promoting the transport of DIC-rich Pacific Water into the Makarov Basin.

Funder

Tianjin Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3