Chloride load dynamics along channelized and intact reaches in a northeastern United States urban headwater stream

Author:

Slosson John RORCID,Lautz Laura K,Beltran Julio

Abstract

Abstract Sodium chloride has long been used for winter deicing, although its legacy use has resulted in rising chloride concentrations in urban watersheds. Persistently high chloride levels impair drinking water resources and threaten the health of aquatic life and vegetation. In urban areas, chloride fate and transport is impacted by human modification of the environment, including increased impervious surface cover and disconnection of stream corridors from riparian groundwater. We couple continuous streamflow records with weekly chloride concentration data over two water years to create continuous chloride load estimates at three locations along a degraded, urban stream in upstate New York with contrasting channelized and intact reaches. Our results show that degraded reaches characterized by channelized, armored banks and minimal groundwater connection deliver chloride loads closer to chloride application rates in the surrounding watershed. In contrast, stream–groundwater interactions in intact reaches adjacent to riparian floodplains, including surface water losses to subsurface flow paths, result in stream chloride loads that are 50% less than those delivered from upstream channelized reaches. These findings show that longitudinal chloride load estimates along a stream channel can be valuable in identifying the timing and magnitude of chloride sources and sinks, which may be common but less apparent in urban environments.

Funder

Syracuse University Collaboration for Unprecedented Success and Excellence (CUSE) Grant

Syracuse University Education Model Program on Water-Energy Research

Syracuse University Research Excellence Doctoral Funding (REDF) Fellowship

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3