Measurement-based carbon intensity of US offshore oil and gas production

Author:

Gorchov Negron Alan MORCID,Kort Eric AORCID,Plant Genevieve,Brandt Adam R,Chen YuanleiORCID,Hausman Catherine,Smith Mackenzie L

Abstract

Abstract The United States (US) produces oil and gas from six offshore regions: the North Slope of Alaska, Cook Inlet in Alaska, offshore California, and three Gulf of Mexico (GOM) sub-regions: state shallow, federal shallow, and deep waters. Measurement-based assessment of direct greenhouse gas emissions from this production can provide real-world information on carbon emissions to inform decisions on current and future production. In evaluating the climate impact of production, the carbon intensity (CI, the ratio of greenhouse gases emitted compared to the energy of fuels produced) is often used, though it is rarely quantified with measurements. Here, we complete an observational evaluation of the US offshore sector and present the largest current set of measurement-based CIs. We collected airborne measurements of methane, carbon dioxide, and nitrogen oxides from the North Slope, Cook Inlet, and California and combined with prior GOM results. For Alaska and California, we found emissions agree with facility-level inventories, however, the inventories miss some facilities. The US offshore CI, on a 100 year GWP basis, is 5.7 g CO2e/MJ[4.5, 6.8, 95% confidence interval]. This is greater than double the CI based on the national US inventory, with the discrepancy attributed primarily to methane emissions from GOM shallow waters, with a methane dominated CI of 16[12, 22] for GOM federal shallow waters and 43[25–65] for state shallow waters. Regional intensities vary, with carbon dioxide emissions largely responsible for CI on the North Slope 11[7.5, 15], in Cook Inlet 22[13, 34], offshore California 7.2[3.2, 13], and in GOM deep waters 1.1[1.0, 1.1]. These observations indicate offshore operations outside of the GOM in the US have modest methane emissions, but the CI can still be elevated due to direct carbon dioxide emissions. Accurate assessment of different offshore basins, with differing characteristics and practices, is important for the climate considerations of expanded production.

Funder

University of Michigan

Alfred P. Sloan Foundation

Graham Sustainability Institute

Environmental Defense Fund

Scientific Aviation

Publisher

IOP Publishing

Reference68 articles.

1. Summary for policymakers;IPCC,2021

2. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum;Burnham;Environ. Sci. Technol.,2012

3. Global carbon intensity of crude oil production;Masnadi;Science,2018

4. Assessment of methane emissions from the U.S. oil and gas supply chain;Alvarez;Science,2018

5. World energy outlook 2022;International Energy Agency

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3