Abstract
Abstract
Local topological markers are effective tools for determining the topological properties of both homogeneous and inhomogeneous systems. The Chern marker is an established topological marker that has previously been shown to effectively reveal the topological properties of 2D systems. In an earlier work, the present authors have developed a marker that can be applied to 1D time-dependent systems which can be used to explore their topological properties, like charge pumping under the presence of disorder. In this paper, we show how to alter the 1D marker so that it can be applied to quasiperiodic and aperiodic systems. We then verify its effectiveness against different quasicrystal Hamiltonians, some which have been addressed in previous studies using existing methods, and others which possess topological structures that have been largely unexplored. We also demonstrate that the altered 1D marker can be productively applied to systems that are fully aperiodic.
Funder
Engineering and Physical Sciences Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献