Patient-independent, MHD-robust R-peak detection for retrospective gating in cardiac MRI imaging

Author:

Ganassin Sara,Galli AlessandraORCID,Ouzounov SotirORCID,Narduzzi ClaudioORCID

Abstract

Abstract Objective. In cardiovascular magnetic resonance imaging, synchronization of image acquisition with heart motion (called gating) is performed by detecting R-peaks in electrocardiogram (ECG) signals. Effective gating is challenging with 3T and 7T scanners, due to severe distortion of ECG signals caused by magnetohydrodynamic effects associated with intense magnetic fields. This work proposes an efficient retrospective gating strategy that requires no prior training outside the scanner and investigates the optimal number of leads in the ECG acquisition set. Approach. The proposed method was developed on a data set of 12-lead ECG signals acquired within 3T and 7T scanners. Independent component analysis is employed to effectively separate components related with cardiac activity from those associated to noise. Subsequently, an automatic selection process identifies the components best suited for accurate R-peak detection, based on heart rate estimation metrics and frequency content quality indexes. Main results. The proposed method is robust to different B0 field strengths, as evidenced by R-peak detection errors of 2.4 ± 3.1 ms and 10.6 ± 15.4 ms for data acquired with 3T and 7T scanners, respectively. Its effectiveness was verified with various subject orientations, showcasing applicability in diverse clinical scenarios. The work reveals that ECG leads can be limited in number to three, or at most five for 7T field strengths, without significant degradation in R-peak detection accuracy. Significance. The approach requires no preliminary ECG acquisition for R-peak detector training, reducing overall examination time. The gating process is designed to be adaptable, completely blind and independent of patient characteristics, allowing wide and rapid deployment in clinical practice. The potential to employ a significantly limited set of leads enhances patient comfort.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

IOP Publishing

Reference48 articles.

1. Reference signal extraction from corrupted ecg using wavelet decomposition for mri sequence triggering: application to small animals;Abi-Abdallah;Biomed. Eng. Online,2006

2. Removing the mhd artifacts from the ECG signal for cardiac mri synchronization;Abi-Abdallah,2005

3. A system for cardiac and respiratory gating of a magnetic resonance imager;Amoore;Clin. Phys. Physiol. Meas.,1989

4. Ica based flow artifact removal from ecg during mri;Bhatt,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3