A deep learning approach to estimate pulse rate by remote photoplethysmography

Author:

Lampier Lucas CôgoORCID,Valadão Carlos Torturella,Silva Leticia Araújo,Delisle-Rodríguez DenisORCID,Caldeira Eliete Maria de Oliveira,Bastos-Filho Teodiano Freire

Abstract

Abstract Objective. This study proposes a U-net shaped Deep Neural Network (DNN) model to extract remote photoplethysmography (rPPG) signals from skin color signals to estimate Pulse Rate (PR). Approach. Three input window sizes are used in the DNN: 256 samples (5.12 s), 512 samples (10.24 s), and 1024 (20.48 s). A data augmentation algorithm based on interpolation is also used here to artificially increase the number of training samples. Main results. The proposed model outperformed a prior-knowledge rPPG method by using input signals with window of 256 and 512 samples. Also, it was found that the data augmentation procedure only increased the performance for the window of 1024 samples. The trained model achieved a Mean Absolute Error (MAE) of 3.97 Beats per Minute (BPM) and Root Mean Squared Error (RMSE) of 6.47 BPM, for the 256 samples window, and MAE of 3.00 BPM and RMSE of 5.45 BPM for the window of 512 samples. On the other hand, the prior-knowledge rPPG method got a MAE of 8.04 BPM and RMSE of 16.63 BPM for the window of 256 samples, and MAE of 3.49 BPM and RMSE of 7.92 BPM for the window of 512 samples. For the longest window (1024 samples), the concordance of the predicted PRs from the DNNs and the true PRs was higher when applying the data augmentation procedure. Significance. These results demonstrate a big potential of this technique for PR estimation, showing that the DNN proposed here may generate reliable rPPG signals even with short window lengths (5.12 s and 10.24 s), suggesting that it needs less data for a faster rPPG measurement and PR estimation.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação Estadual de Amparo à Pesquisa do Estado do Espírito Santo

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3