MAG-Res2Net: a novel deep learning network for human activity recognition

Author:

Liu HanyuORCID,Zhao Boyang,Dai Chubo,Sun Boxin,Li Ang,Wang ZhiqiongORCID

Abstract

Abstract Objective. Human activity recognition (HAR) has become increasingly important in healthcare, sports, and fitness domains due to its wide range of applications. However, existing deep learning based HAR methods often overlook the challenges posed by the diversity of human activities and data quality, which can make feature extraction difficult. To address these issues, we propose a new neural network model called MAG-Res2Net, which incorporates the Borderline-SMOTE data upsampling algorithm, a loss function combination algorithm based on metric learning, and the Lion optimization algorithm. Approach. We evaluated the proposed method on two commonly utilized public datasets, UCI-HAR and WISDM, and leveraged the CSL-SHARE multimodal human activity recognition dataset for comparison with state-of-the-art models. Main results. On the UCI-HAR dataset, our model achieved accuracy, F1-macro, and F1-weighted scores of 94.44%, 94.38%, and 94.26%, respectively. On the WISDM dataset, the corresponding scores were 98.32%, 97.26%, and 98.42%, respectively. Significance. The proposed MAG-Res2Net model demonstrates robust multimodal performance, with each module successfully enhancing model capabilities. Additionally, our model surpasses current human activity recognition neural networks on both evaluation metrics and training efficiency. Source code of this work is available at: https://github.com/LHY1007/MAG-Res2Net.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National College Students Innovation and Entrepreneurship Training Program

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3