Abstract
Abstract
Objective. Human activity recognition (HAR) has become increasingly important in healthcare, sports, and fitness domains due to its wide range of applications. However, existing deep learning based HAR methods often overlook the challenges posed by the diversity of human activities and data quality, which can make feature extraction difficult. To address these issues, we propose a new neural network model called MAG-Res2Net, which incorporates the Borderline-SMOTE data upsampling algorithm, a loss function combination algorithm based on metric learning, and the Lion optimization algorithm. Approach. We evaluated the proposed method on two commonly utilized public datasets, UCI-HAR and WISDM, and leveraged the CSL-SHARE multimodal human activity recognition dataset for comparison with state-of-the-art models. Main results. On the UCI-HAR dataset, our model achieved accuracy, F1-macro, and F1-weighted scores of 94.44%, 94.38%, and 94.26%, respectively. On the WISDM dataset, the corresponding scores were 98.32%, 97.26%, and 98.42%, respectively. Significance. The proposed MAG-Res2Net model demonstrates robust multimodal performance, with each module successfully enhancing model capabilities. Additionally, our model surpasses current human activity recognition neural networks on both evaluation metrics and training efficiency. Source code of this work is available at: https://github.com/LHY1007/MAG-Res2Net.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
National College Students Innovation and Entrepreneurship Training Program
Subject
Physiology (medical),Biomedical Engineering,Physiology,Biophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献