Evaluating multifunctional efficiency of a structural battery composite via thermo-electro-chemical modeling

Author:

Eaton JacobORCID,Naraghi MohammadORCID,Boyd James G

Abstract

Abstract The emerging research field of structural batteries aims to combine the functions of load bearing and energy storage to improve system-level energy storage in battery-powered vehicles and consumer products. Structural batteries, when implemented in electric vehicles, will be exposed to greater temperature fluctuations than conventional batteries in electric vehicles. However, there is a lack of knowledge in public domains and scientific literature regarding how these thermal boundary conditions impact power capabilities of the structural batteries. To fill this gap, the present work simulates the transient temperature-dependent specific power capabilities of a high aspect ratio structural battery composite by solving the one-dimensional heat transfer equation with heat source terms and convective boundary conditions. Equivalent circuit modeling of resistivity-induced losses is used with a second-order finite difference method to examine battery performance. More than 60 different run configurations are evaluated in this work, examining how thermal boundary conditions and internal heat generation influence power capabilities and multifunctional efficiency of the structural battery. The simulated structural battery composite is shown to have good specific Young’s modulus (79.5%–80.3% of aluminum), a specific energy of 158 Wh kg−1, and specific power of 41.2–55.2 W kg−1, providing a multifunctional efficiency of 1.15–1.17 depending on configuration and thermal loading conditions and demonstrating the potential of load-bearing structural batteries to achieve mass savings. This work emphasizes the dependency of power efficiency on cell design and external environmental conditions. Insulating material is shown to improve multifunctional efficiency, particularly for low ambient temperatures. It is demonstrated that as cell temperature increases due to high ambient temperature or heat generation in the battery, the specific power efficiency increases exponentially due to a favorable nonlinear relation between ionic conductivity and cell temperature. The simulations also demonstrate a thermal feedback loop where resistivity-induced power losses can lead to self-regulation of cell temperature. This effect reduces run-averaged losses, particularly at low ambient temperatures.

Funder

T3 TAMU Presidents Office

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Materials Science (miscellaneous),Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3