Hubble Space Telescope Metallized Teflon ® FEP thermal Control Materials: On-Orbit Degradation and Post-Retrieval Analysis

Author:

Townsend Jacqueline A,Hansen Patricia A1,Dever Joyce A,de Groh Kim K,Banks Bruce A2,Wang Len,He Charles3

Affiliation:

1. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

2. NASA Lewis Research Center, Cleveland, OH 44135, USA

3. Unysis Corporation, Lanham, MD 20705, USA

Abstract

During the Hubble Space Telescope (HST) second servicing mission (SM2), degradation of unsupported Teflon® FEP (fluorinated ethylene propylene), used as the outer layer of the multilayer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon® FEP sample evaluation and additional testing of pristine Teflon® FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, ultraviolet and x-ray radiation along with thermal cycling. This paper discusses the testing and evaluation of the retrieved Teflon® FEP.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3