The origin of Ti 1s XANES main edge shifts and EXAFS oscillations in the energy storage materials Ti2CT x and Ti3C2T x MXenes

Author:

Näslund Lars-ÅkeORCID,Magnuson MartinORCID

Abstract

Abstract A potential application of two-dimensional (2D) MXenes, such as Ti2CT x and Ti3C2T x , is energy storage devices, such as supercapacitors, batteries, and hydride electrochemical cells, where intercalation of ions between the 2D layers is considered as a charge carrier. Electrochemical cycling investigations in combination with Ti 1s x-ray absorption spectroscopy have therefore been performed with the objective to study oxidation state changes during potential variations. In some of these studies Ti3C2T x has shown main edge shifts in the Ti 1s x-ray absorption near-edge structure. Here we show that these main edge shifts originate from the Ti 4p orbital involvement in the bonding between the surface Ti and the termination species at the fcc-sites. The study further shows that the t 2g –eg crystal field splitting (10Dq) observed in the pre-edge absorption region indicate weaker Ti–C bonds in Ti2CT x and Ti3C2T x compared to TiC and the corresponding MAX phases. The results from this study provide information necessary for improved electronic modeling and subsequently a better description of the materials properties of the MXenes. In general, potential applications, where surface interactions with intercalation elements are important processes, will benefit from the new knowledge presented.

Funder

the National Supercomputer Centre (NSC), Linköping University

Carl Tryggers Foundation

Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University

Svenska Forskningsrådet Formas

Swedish Energy Research

Swedish Governmental Agency for Innovation Systems

Swedish Research council

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3