Cr silicate as a prototype for engineering magnetic phases in air-stable two-dimensional transition-metal silicates

Author:

Doudin NassarORCID,Saritas KayahanORCID,Zheng Jin-ChengORCID,Boscoboinik J AnibalORCID,Sadowski Jerzy TORCID,Shafer PadraicORCID,N’Diaye Alpha TORCID,Li Min,Ismail-Beigi SohrabORCID,Altman Eric IORCID

Abstract

Abstract Identifying environmentally inert, ferromagnetic two-dimensional (2D) materials with high Curie temperatures (T c) down to the single layer limit has been an obstacle to fundamental studies of 2D magnetism and application of 2D heterostructures to spin-polarized devices. To address this challenge, the growth, structure and magnetic properties of a 2D Cr-silicate single layer on Pt(111) was investigated experimentally and theoretically. The layer was grown by sequentially depositing SiO and Cr followed by annealing in O2. Scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and low energy electron microscopy all indicated a well-ordered layer that uniformly covered the surface, with STM and LEED indicating that the silicate relaxed to its favored lattice constant. Further experimental characterizations demonstrated that the Cr was nominally 3+ but with a lower electron density than typical trivalent Cr compounds. Comparison with theory identified a Cr2Si2O9 structure that resembles a single layer of a dehydrogenated dioctahedral silicate. Magnetic circular dichroism in x-ray absorption spectroscopy revealed a ferromagnetically ordered state up to at least 80 K. Theoretical analysis revealed that the Cr in a dehydrogenated Cr-silicate/Pt(111) is more oxidized than Cr in freestanding Cr2Si2O9H4 layers. This greater oxidation was found to enhance ferromagnetic coupling and suggests that the magnetism may be tuned by doping. The 2D Cr-silicate is the first member of a broad series of possible layered first-row transition metal silicates with magnetic order; thus, this paper introduces a new platform for investigating 2D ferromagnetism and the development of magnetoelectronic and spintronic devices by stacking 2D atomic layers.

Funder

US Army Research Office

DOE Office of Science User Facility

Brookhaven National Laboratory

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3