Novel techniques for characterising graphene nanoplatelets using Raman spectroscopy and machine learning

Author:

Orts Mercadillo VicenteORCID,Ijije Happiness,Chaplin LukeORCID,Kinloch Ian AORCID,Bissett Mark AORCID

Abstract

Abstract A significant challenge for graphene nanoplatelet (GNP) suppliers is the characterisation of platelet morphology in industrial environments. This challenge is further exacerbated to platelet surface chemistry when scalable functionalisation processes, such as plasma treatment, are used to modify the GNPs to improve the filler-matrix interphase in nanocomposites. The costly and complex suite of analytical equipment necessary for a complete material description makes quality control and process optimisation difficult. Raman spectroscopy is a facile and accessible characterisation technique, with recent advancements unlocking fast mapping for rapid data collection. In this study, we develop novel techniques to better characterise GNP morphology and changes in surface chemistry using Raman maps of bulk powders. Providing a bespoke algorithmic framework for the analysis of these advanced materials. An unsupervised peak fitting and processing algorithm was used to extract crystallinity data and correlate it with laser-diffraction-derived lateral size values for a commercial set of GNPs rapidly and accurately. Classical machine learning was used to identify the most informative Raman features for classifying the plasma-functionalised GNPs. The initial material properties were found to affect the peak features that were the most useful for classification. In low defect density and low specific surface area GNPs, the D peak full width at half maximum is found to be the most useful, whereas the I 2D / I G ratio is the most useful in the opposite case. Finally, a convolutional neural network was trained to discern between different GNP grades with 86% accuracy. This work demonstrates how computer vision could be deployed for rapid and accurate quality control on the factory floor.

Funder

Henry Royce Institute

Haydale, Ltd

Graphene NOWNANO CDT

Royal Academy of Engineering

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Reference38 articles.

1. Electric field effect in atomically thin carbon films;Novoselov;Science,2004

2. Composites with carbon nanotubes and graphene: an outlook;Kinloch;Science,2018

3. Nanotechnologies—vocabulary—Part 13: graphene and related two-dimensional (2D) materials,2017

4. Benchmarking of graphene-based materials: real commercial products versus ideal graphene;Kovtun;2D Mater.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3