Metal–metal bonding, electronic excitations, and strong resonance Raman effect in 2D layered α-MoCl3

Author:

Schiemenz Sandra,Froeschke SamuelORCID,Naumann Marco,Rosenkranz Marco,Büchner Bernd,Koitzsch AndreasORCID,Knupfer MartinORCID,Hampel Silke,Avdoshenko Stanislav MORCID,Popov Alexey AORCID

Abstract

Abstract Covalent bonding between transition metal atoms is a common phenomenon in honeycomb lattices of layered materials, which strongly affects their electronic and magnetic properties. This work presents a detailed spectroscopic study of α-MoCl3, 2D van der Waals material with covalently bonded Mo2 dimers, with a particular focus on the Mo–Mo bonding. Raman spectra of α-MoCl3 were studied with multiple excitation laser lines chosen in different parts of the absorption spectrum, while polarization measurements aided in the symmetry assignment of the observed modes. Furthermore, far-IR measurements and (Density Functional Theory) DFT phonon computations were performed to complete vibrational assignment. Polarized absorption, PL, and photoelectron spectroscopy supported by DFT calculations were employed to understand the consequences of the Mo–Mo bonding for the electronic structure and the localization/delocalization balance in d3–d3 interactions. A coupling of dimerization-related structural and electronic properties was revealed in the strong resonance Raman enhancement of the Mo–Mo stretching mode at 153 cm−1 when the excitation laser matched the electronic transition between σ-bonding and antibonding orbitals of the Mo2 dimer (σσ*). The deeper understanding of the metal–metal bonding and identification of the vibrational and electronic spectroscopic signatures of the dimerization will be of great use for the studies of electron delocalization in magnetic van der Waals materials.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3