Measurement and optimization of multi-attribute characteristics in milling epoxy granite composites using rsm and combined ahp-topsis

Author:

ArunRamnath RORCID,Thyla P. R.

Abstract

Abstract Epoxy granite composites with its wide range of applications in machine tool industries are manufactured by molding process and require post cast machining operations to meet the desired dimensional accuracy for assembly of machine tool structures. In this research work, milling of epoxy granite composites are carried out based on the experimental design from Response Surface Methodology (RSM) techniques and further the optimal solutions are determined by a novel hybrid algorithm AHP-TOPSIS. Central Composite Design (CCD) model is applied with three factors-three levels and the measured output responses are thrust force, tangential force and surface roughness. Experimental combinations of 20 different trials are performed using high speed steel end mill cutter of diameter 10mm with three levels of input parameters: speed; fibre content and feed rate at a uniform depth of cut. The relative importance matrix formulated proved to be highly consistent with its consistency ratio to a maximum of 0.000641 which lies below the higher range of 0.1. Consistency ratio of 0.000641 reveals that the optimal solutions determined will be highly reliable and the decision making is much more judicious. Optimal solution determined from hybrid AHP-TOPSIS methods are: speed 1800 rpm; feed rate 0.03 m/min and 0% percent fibre content. Functional relationships among parameters and responses established by RSM are consistent upto 95% and its significance is tested by analysis of variance. Comparison among predicted and experimental values of three measured responses convey that the percentage variations are minimum with up to 2.03% for surface roughness, 2.50% for thrust force and 2.71% for tangential force components. This research work provides a systematic procedure and clear framework for determination of optimal machining conditions by hybrid methodology on the basis of technique for order preference by similarity to ideal solution (TOPSIS) combined with analytical hierarchy procedure (AHP) for attribute weights and further analyzes the influence of machining parameters over measured responses.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3