Experimental study for optimizing superfinishing process parameters of high-quality alloy bearing steel

Author:

Qasem Isam,Hussien Ahmed A,Janvekar Ayub Ahmed,Kataraki Pramodkumar S,Pracki Mirosław,Abdul Mujeebu MORCID

Abstract

Abstract Superfinishing is one of the methods of high-quality surface machining of elements subjected to high surface wear. It is used for machining external and internal cylindrical surfaces using various models of tools. This experimental study was aimed at determining the effect of machining parameters on surface roughness of high-quality alloy bearing steel. The factors considered were angle of crosshatch pattern (realized by the rotational speed at constant velocity and oscillation), machining time, and pressure of the tool on the machined surface. The experiment was carried out according to the analysis planned for two tools with granulations of 500 and 800. The polynomial and exponential regression equations for subsequent roughness and performance parameters were determined statistically. The multidimensional correlations based on the t-student distribution were established. The results showed that the optimum surface quality depended on the process parameters: grain size, machining time, crosshatch angle, and the contact pressure. The time at which the machining process starts to stabilize with a steady surface roughness was determined to be 120 s. The maximum enhancement of surface roughness was 75% for crosshatch angle of 13°, contact pressure of 0.21 MPa, and granulation of 800. For both 500 and 800 granulations, the diameter loss was in the range of 1–12 microns.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3