Abstract
Abstract
The aim of this study is to examine the stress–strain behavior of Glass Fibre Reinforced Polymer (GFRP) composite with three different orientations, namely [0°/90°]s, [±45]s, [0°/+45°/−45°/90°]T. To achieve this, the GFRP was simulated using the Split Hopkinson Bar (SHPB) setup in ABAQUS/CAE. The striker bar was used at three different velocities (9.7 m s−1, 12.7 m s−1, and 14.3 m s−1) to produce strain rates ranging from 1000 s−1 to 2000 s−1. The dynamic response of the GFRP composite was studied by considering its stress–strain behavior. The effect of strain rate on the elastic modulus and energy absorption capacity of GFRP laminates was analyzed through complete stress versus strain curves. The results showed that the elastic modulus and energy absorption capacity of GFRP laminates were sensitive to strain rates, with an increase in strain rate leading to an increase in the elastic modulus and energy absorption capacity.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation