Hot deformation and fatigue behaviour of a zinc base doped biocompatible material: characterization of plasma spray coating on surface

Author:

B VinodORCID,Sonagiri SureshORCID,S Sunil Kumar Reddy

Abstract

Abstract Composite materials are natural or man-made substances put into the body to turn a living cell into a working organ. Bone tissue and biocompatibility are emerging as an alternative approach to regenerating bone due to some distinct advantages over autografting. This research aimed to fabricate a novel porous scaffold that can be utilized as a bone substitute. Zn-nHApx-Srx (x = 0, 3, 6, 9) was selected by different weight ratios and synthesized using the powder metallurgy method. The utilization of nanohydroxyapatite (Ca10(PO4)6(OH)2) is due to its excellent biocompatibility with the human body. Polylactic-co-glycolic acid (PLGA) is incorporated to get enhanced biological performance. Plasma spray coating was performed on a zinc substrate using pure and doped biocomposites calcined at 800 °C. The biocomposites tensile strength increased between 0.4 and 19.8 MPa by increasing Zn and Sr weight ratios. In addition, 3% Sr/2.5% Zn with 2% of nHAp-PLGA composite showed improved hardness, which is beneficial for resembling bone tissue and die-casting fittings in automobile manufacturing applications. Mechanical properties, FT-IR, hot deformation behaviour, and SEM techniques help us understand the behaviour of Zn-Sr-nHAp in a vial containing PLGA. The highest ultimate tensile strength of 182 MPa and improved flow softening behaviour are achieved in a coated Zn/6% (nHAp-Sr) mixture suitable for biodegradable implant applications.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3