Experimental investigation on micro ED milling of inconel alloy with SiC nano powder mixed Pongamia BD at different parametric condition

Author:

P Saravana KumarORCID,K V Arun PillaiORCID

Abstract

Abstract μED-milling is an excellent micro machining process for machining of complex micro structures on conducting materials. In this paper, the feasibility of SiC nano powder mixed Pongamia BD as a dielectric medium while μED-milling of Inconel 718 alloy at different parametric settings namely capacitance (10 nf, 100 nf, 400 nf), powder concentration (0 g l−1, 0.1 g l−1, 0.3 g l−1) and voltage (120 v, 130 v, 140 v) is analysed. Further, the craters dimensions are correlated with the 3D roughness parameters (Spk, Sk and Svk) in this investigation. Lower settings of capacitance (10 nF) offered a maximum MRR (601767.1 μm3 s−1) compared to intermediate (398080.62 μm3 s−1) and higher (273498.29 μm3 s−1) settings of capacitance. MRR is increased around 1.3 times with Pongamia BD compared to SiC nano powder mixed Pongamia BD at considered parametric settings. Crater diameter is decreased by 24.1% with SiC nano powder mixed Pongamia BD due to lesser amount heat transfer to workpiece. Droplet angle of machined surface with SiC nano powder mixed Pongamia BD is 20% higher than Pongamia BD at considered parametric settings. Capacitance and voltage have the significant influence on crater diameter and roughness. Maximum MRR (1034239.41 μm3 s−1) is achieved with machining condition (10 nF, 120 V, 0 g l−1) for considered biodiesels. RLT appears to be higher around 27% with the processed surface of SiC nano powder mixed Pongamia BD as compared to Pongamia BD due to reaction of powder particles with work material. 3D roughness parameters (Spk, Sk and Svk) were greatly reduced due to inclusion of powder in biodiesels. Sk (core zone) are decreased (42.8%) with 0.3 g/l SiC nano powder mixed Pongamia BD compared to Pongamia BD.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3