SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor

Author:

Wang Zhao,Fan Shu-Xing,Tang Wei

Abstract

SnO2/Co3O4 nanofibers (NFs) are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields. The morphology and structure of SnO2/Co3O4 hetero-nanofibers are characterized by using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectrometer (XPS). The analyses of SnO2/Co3O4 NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber, which is related to the homopolar electrospinning and the crystallization during sintering. As a typical n-type semiconductor, SnO2 has the disadvantages of high optimal operating temperature and poor reproducibility. Comparing with SnO2, the optimal operating temperature of SnO2/Co3O4 NFs is reduced from 350°C to 250°C, which may be related to the catalysis of Co3O4. The response of SnO2/Co3O4 to 100-ppm ethanol at 250°C is 50.9, 9 times higher than that of pure SnO2, which may be attributed to the p–n heterojunction between the n-type SnO2 crystalline grain and the p-type Co3O4 crystalline grain. The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier. The synergy effects between SnO2 and Co3O4, the crystalline grain p–n heterojunction, the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3