Design and investigation of doping-less gate-all-around TFET with Mg2Si source material for low power and enhanced performance applications

Author:

Agarwal Pranav,Rai Sankalp,Y. A Rakshit,Mishra Varun

Abstract

Metal–oxide–semiconductor field-effect transistor (MOSFET) faces the major problem of being unable to achieve a subthreshold swing (SS) below 60 mV/dec. As device dimensions continue to reduce and the demand for high switching ratios for low power consumption increases, the tunnel field-effect transistor (TFET) appears to be a viable device, displaying promising characteristic as an answer to the shortcomings of the traditional MOSFET. So far, TFET designing has been a task of sacrificing higher ON state current for low subthreshold swing (and vice versa), and a device that displays both while maintaining structural integrity and operational stability lies in the nascent stages of popular research. This work presents a comprehensive analysis of a heterojunction plasma doped gate-all-around TFET (HPD-GAA-TFET) by making a comparison between Mg2Si and Si which serve as source materials. Charge plasma technique is employed to implement doping in an intrinsic silicon wafer with the help of suitable electrodes. A low-energy bandgap material, i.e. magnesium silicide is incorporated as source material to form a heterojunction between source and silicon-based channel. A rigorous comparison of performance between Si-based GAA-TFET and HPD-GAA-TFET is conducted in terms of electrical, radio frequency (RF), linearity, and distortion parameters. It is observable that HPD-GAA-TFET outperforms conventional Si-based GAA-TFET with an ON-state current (I ON), subthreshold swing (SS), threshold voltage (V th), and current switching ratio being 0.377 mA, 12.660 mV/dec, 0.214 V, and 2.985 × 1012, respectively. Moreover, HPD-GAA-TFET holds faster switching and is more reliable than Si-based device. Therefore, HPD-GAA-TFET is suitable for low-power applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3