Possibility to break through limitation of measurement range in dual-wavelength digital holography*

Author:

Li Tuo,Lei Wen-Xiu,Sun Xin-Kai,Dong Jun,Tao Ye,Shi Yi-Shi

Abstract

By using the beat frequency technique, the dual-wavelength digital holography (DWDH) can greatly increase the measurement range of the system. However, the beat frequency technique has a limitation in measurement range. The measurement range is not larger than a synthetic wavelength. Here, to break through this limitation, we propose a novel DWDH method based on the constrained underdetermined equations, which consists of three parts: (i) prove that the constrained underdetermined equation has a unique integer solution, (ii) design an algorithm to search for the unique integer solution, (iii) introduce a third wavelength into the DWDH system, and design a corresponding algorithm to enhance the anti-noise performance of DWDH. As far as we know, it is the first time that we have discovered that the problem of DWDH can belong in a problem of contained underdetermined equations, and it is also the first time that we have given the mathematical proof for breaking through the limitation of the measurement range. A series of results is shown to test the theory and the corresponding algorithms. More importantly, since the principle of proposed DWDH is based on basic mathematical principles, it can be further extended to various fields, such as dual-wavelength microwave imaging and dual-wavelength coherent diffraction imaging.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3