Theoretical study of novel B–C–O compounds with non-diamond isoelectronic

Author:

Liu Chao,Ying Pan

Abstract

Two novel non-isoelectronic with diamond (non-IED) B–C–O phases (tI16-B8C6O2 and mP16-B8C5O3) have been unmasked. The research of the phonon scattering spectra and the independent elastic constants under ambient pressure (AP) and high pressure (HP) proves the stability of these non-IED B–C–O phases. Respective to the common compounds, the research of the formation enthalpies and the relationship with pressure of all non-IED B–C–O phases suggests that HP technology performed in the diamond anvil cell (DAC) or large volume press (LVP) is an important technology for synthesis. Both tI16-B8C6O2 and tI12-B6C4O2 possess electrical conductivity. mP16-B8C5O3 is a small bandgap semiconductor with a 0.530 eV gap. For aP13-B6C2O5, mC20-B2CO2 and tI18-B4CO4 are all large gap semiconductors with gaps of 5.643 eV, 6.113 eV, and 7.105 eV, respectively. The study on the relationship between band gap values and pressure of these six non-IED B–C–O phases states that tI16-B8C6O2 and tI12-B6C4O2 maintain electrical conductivity, mC20-B2CO2 and tI18-B4CO4 have good bandgap stability and are less affected by pressure. The stress-strain simulation reveals that the max strain and stress of 0.4 GPa and 141.9 GPa respectively, can be sustained by tI16-B8C6O2. Studies on their mechanical properties shows that they all possess elasticity moduli and hard character. And pressure has an obvious effect on their mechanical properties, therein toughness of tI12-B6C4O2, aP13-B6C2O5, mC20-B2CO2 and tI18-B4CO4 all increases, and hardness of mP16-B8C5O3 continue to strengthen during the compression. With abundant hardness characteristics and tunable band gaps, extensive attention will be focused on the scientific research of non-IED B–C–O compounds.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3