Author:
Liu 刘 Bo-Liang 博梁,Liu 刘 Dong 冬,Yao 姚 Ming 明,Jin 金 Jun-Da 骏达,Wang 王 Zheng 争,Li 李 Jing 婧,Shi 史 Sheng-Cai 生才,Chekushkin Artem,Fominsky Michael,Filippenko Lyudmila,Koshelets Valery
Abstract
The terahertz band, a unique segment of the electromagnetic spectrum, is crucial for observing the cold, dark universe and plays a pivotal role in cutting-edge scientific research, including the study of cosmic environments that support life and imaging black holes. High-sensitivity superconductor–insulator–superconductor (SIS) mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays. Compared to the commonly used classical Nb/AlO
x
/Nb superconducting tunnel junction, the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density. This makes it particularly promising for the development of ultra-wideband, high-sensitivity coherent detectors or mixers in various scientific research fields. In this paper, we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions (PCTJ), which has a bandwidth extending up to 490 GHz–720 GHz. The best achieved double-sideband (DSB) noise temperature (sensitivity) is below three times the quantum noise level.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献