Electronic structure engineering of transition metal dichalcogenides for boosting hydrogen energy conversion electrocatalysts

Author:

Hao 郝 Bing 兵,Guo 郭 Jingjing 晶晶,Liu 刘 Peizhi 培植,Guo 郭 Junjie 俊杰

Abstract

Abstract Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels. This promising process, however, is limited by its sluggish reaction kinetics and high-cost catalysts. The two-dimensional (2D) transition metal dichalcogenides (TMDCs) have presented great potential as electrocatalytic materials due to their tunable bandgaps, abundant defective active sites, and good chemical stability. Consequently, phase engineering, defect engineering and interface engineering have been adopted to manipulate the electronic structure of TMDCs for boosting their exceptional catalytic performance. Particularly, it is essential to clarify the local structure of catalytically active sites of TMDCs and their structural evolution in catalytic reactions using atomic resolution electron microscopy and the booming in situ technologies, which is beneficial for exploring the underlying reaction mechanism. In this review, the growth regulation, characterization, particularly atomic configurations of active sites in TMDCs are summarized. The significant role of electron microscopy in the understanding of the growth mechanism, the controlled synthesis and functional optimization of 2D TMDCs are discussed. This review will shed light on the design and synthesis of novel electrocatalysts with high performance, as well as prompt the application of advanced electron microscopy in the research of materials science.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3