Author:
Cao Lin,Song Li-Jian,Cao Ya-Ru,Xu Wei,Huo Jun-Tao,Lv Yun-Zhuo,Wang Jun-Qiang
Abstract
It has been a long-standing puzzling problem that some glasses exhibit higher glass transition temperatures (denoting high stability) but lower activation energy for relaxations (denoting low stability). In this paper, the relaxation kinetics of the nanoconfined D-mannitol (DM) glass was studied systematically using a high-precision and high-rate nanocalorimeter. The nanoconfined DM exhibits enhanced thermal stability compared to the free DM. For example, the critical cooling rate for glass formation decreases from 200 K/s to below 1 K/s; the T
g increases by about 20 K–50 K. The relaxation kinetics is analyzed based on the absolute reaction rate theory. It is found that, even though the activation energy E* decreases, the activation entropy S* decreases much more for the nanoconfined glass that yields a large activation free energy G* and higher thermal stability. These results suggest that the activation entropy may provide new insights in understanding the abnormal kinetics of nanoconfined glassy systems.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献