Optical second-harmonic generation of Janus MoSSe monolayer

Author:

Bian Ce,Shi Jianwei,Liu Xinfeng,Yang Yang,Yang Haitao,Gao Hongjun

Abstract

The transition metal dichalcogenides (TMD) monolayers have shown strong second-harmonic generation (SHG) owing to their lack of inversion symmetry. These ultrathin layers then serve as the frequency converters that can be intergraded on a chip. Here, taking MoSSe as an example, we report the first detailed experimental study of the SHG of Janus TMD monolayer, in which the transition metal layer is sandwiched by the two distinct chalcogen layers. It is shown that the SHG effectively arises from an in-plane second-harmonic polarization under paraxial focusing and detection. Based on this, the orientation-resolved SHG spectroscopy is realized to readily determine the zigzag and armchair axes of the Janus crystal with an accuracy better than ±0.6°. Moreover, the SHG intensity is wavelength-dependent and can be greatly enhanced (∼ 60 times) when the two-photon transition is resonant with the C-exciton state. Our findings uncover the SHG properties of Janus MoSSe monolayer, therefore lay the basis for its integrated frequency-doubling applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3