Magnetic-field-controlled spin valve and spin memory based on single-molecule magnets

Author:

Zhang Zhengzhong,Guo Ruya,Bo Rui,Liu Hao

Abstract

A single-molecule magnet is a long-sought-after nanoscale component because it can enable us to miniaturize nonvolatile memory storage devices. The signature of a single-molecule magnet is switching between two bistable magnetic ground states under an external magnetic field. Based on this feature, we theoretically investigate a magnetic-field-controlled reversible resistance change active at low temperatures in a molecular magnetic tunnel junction, which consists of a single-molecule magnet sandwiched between a ferromagnetic electrode and a normal metal electrode. Our numerical results demonstrate that the molecular magnetism orientation can be manipulated by magnetic fields to be parallel/antiparallel to the ferromagnetic electrode magnetization. Moreover, different magnetic configurations can be “read out” based on different resistance states or different spin polarization parameters in the current spectrum, even in the absence of a magnetic field. Such an external magnetic field-controlled resistance state switching effect is similar to that in traditional spin valve devices. The difference between the two systems is that one of the ferromagnetic layers in the original device has been replaced by a magnetic molecule. This proposed scheme provides the possibility of better control of the spin freedom of electrons in molecular electrical devices, with potential applications in future high-density nonvolatile memory devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3