Bio-inspired environmental adaptability of swarm active matter

Author:

Jin Yangkai,Wang Gao,Yuan Daming,Wang Peilong,Wang Jing,Chen Huaicheng,Liu Liyu,Zan Xingjie

Abstract

How biologically active matters survive adaptively in complex and changeable environments is a common concern of scientists. Genetics, evolution and natural selection are vital factors in the process of biological evolution and are also the key to survival in harsh environments. However, it is challenging to intuitively and accurately reproduce such long-term adaptive survival processes in the laboratory. Although simulation experiments are intuitive and efficient, they lack fidelity. Therefore, we propose to use swarm robots to study the adaptive process of active matter swarms in complex and changeable environments. Based on a self-built virtual environmental platform and a robot swarm that can interact with the environment, we introduce the concept of genes into the robot system, giving each robot unique digital genes, and design robot breeding methods and rules for gene mutations. Our previous work [Proc. Natl. Acad. Sci. USA 119 e2120019119 (2022)] has demonstrated the effectiveness of this system. In this work, by analyzing the relationship between the genetic traits of the population and the characteristics of environmental resources, and comparing different experimental conditions, we verified in both robot experiments and corresponding simulation experiments that agents with genetic inheritance can survive for a long time under the action of natural selection in periodically changing environments. We also confirmed that in the robot system, both breeding and mutation are essential factors. These findings can help answer the practical scientific question of how individuals and swarms can successfully adapt to complex, dynamic, and unpredictable actual environments.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3