A cryogenic radio-frequency ion trap for a 40Ca+ optical clock

Author:

Zeng 曾 Mengyan 孟彦,Huang 黄 Yao 垚,Zhang 张 Baolin 宝林,Ma 马 Zixiao 子晓,Hao 郝 Yanmei 艳梅,Hu 胡 Ruming 如明,Zhang 张 Huaqing 华青,Guan 管 Hua 桦,Gao 高 Kelin 克林

Abstract

A liquid-nitrogen cryogenic 40Ca+ optical clock is presented that is designed to greatly reduce the blackbody radiation (BBR) shift. The ion trap, the electrodes and the in-vacuum BBR shield are installed under the liquid-nitrogen container, keeping the ions in a cryogenic environment at liquid-nitrogen temperature. Compared with the first design in our previous work, many improvements have been made to increase the performance. The liquid-nitrogen maintenance time has been increased by about three times by increasing the volume of the liquid-nitrogen container; the trap position recovery time after refilling the liquid-nitrogen container has been decreased more than three times by using a better fixation scheme in the liquid-nitrogen container; and the magnetic field noise felt by the ions has been decreased more than three times by a better design of the magnetic shielding system. These optimizations make the scheme for reducing the BBR shift uncertainty of liquid-nitrogen-cooled optical clocks more mature and stable, and develop a stable lock with a narrower linewidth spectrum, which would be very beneficial for further reducing the overall systematic uncertainty of optical clocks.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3