Author:
Hao Dong,Tang Xiangqian,Wang Wenyu,An Yang,Wang Yueyi,Shan Xinyan,Lu Xinghua
Abstract
The orientation switching of a single azobenzene molecule on Au(111) surface excited by tunneling electrons and/or photons has been demonstrated in recent experiments. Here we investigate the rotation behavior of this molecular rotor by first-principles density functional theory (DFT) calculation. The anchor phenyl ring prefers adsorption on top of the fcc hollow site, simulated by a benzene molecule on close packed atomic surface. The adsorption energy for an azobenzene molecule on Au(111) surface is calculated to be about 1.76 eV. The rotational energy profile has been mapped with one of the phenyl rings pivots around the fcc hollow site, illustrating a potential barrier about 50 meV. The results are consistent with experimental observations and valuable for exploring a broad spectrum of molecules on this noble metal surface.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献