Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source

Author:

Mao 毛 Menghui 梦辉,Zhou 周 Wei 唯,Li 李 Xinhui 新慧,Yang 杨 Ran 然,Gong 龚 Yan-Xiao 彦晓,Zhu 祝 Shi-Ning 世宁

Abstract

Abstract Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning (ML) technique for addressing different tasks. Based on ML technique, we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source. By properly modeling the target states, a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique, and hence our method reduces the resource consumption without loss of accuracy. We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data. Explicitly, the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states. Our method could be generalized to estimate other kinds of states, as well as other quantum information tasks.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3