Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application

Author:

Rabienejhad Mohammad Javad,Davoudi-Darareh Mahdi,Mazaheri Azardokht

Abstract

A novel hybrid structure with high responsivity and efficiency is proposed based on an L-shaped frame nano-antenna (LSFNA) array for solar energy harvesting application. So, two types of LSFNAs are designed and optimized to enhance the harvesting characteristics of traditional simple electric dipole nano-antenna (SEDNA). The LSFNA geometrical dimensions are optimized to have the best values for the required input impedance at three resonance wavelengths of λ res = 10 μm, 15 μm, and 20 μm. Then the LSFNAs with three different sizes are modeled like a planar spiral-shaped array (PSSA). Also, a fractal bowtie nano-antenna is connected with the PSSA in the array gap. This proposed hybrid structure consists of two main elements: (I) Three different sizes of the LSFNAs with two different material types are designed based on the thin-film metal–insulator–metal diodes that are a proper method for infrared energy harvesting. (II) The PSSA gap is designed based on the electron field emission proposed by the Fowler–Nordheim theory for the array rectification. Finally, the proposed device is analyzed. The results show that the PSSA not only has an averaged 3-time enhancement in the harvesting characteristics (such as return loss, harvesting efficiency, etc.) than the previously proposed structures but also is a multi-resonance wide-band device. Furthermore, the proposed antenna takes up less space in the electronic circuit and has an easy implementation process.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3