Interfacial defect engineering and Photocatalysis Properties of hBN/MX2(M = Mo, W, and X = S, Se) Heterostructures

Author:

Sun Zhihai,Liu Jiaxi,Zhang Ying,Li Ziyuan,Peng Leyu,Huang Pengru,Zou Yongjin,Xu Fen,Sun Lixian

Abstract

Abstract Van der Waals (VDW) heterostructures have attracted significant research interest due to their tunable interfacial properties and potential in a wide range of applications such as electronics, optoelectronic, and heterocatalysis. In this work, the impact of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX2(M = Mo, W, and X = S, Se) are studied using density functional theory calculations. The results reveal that the band alignment of hBN/MX2 can be adjusted by introducing vacancies and atomic doping. The type-I band alignment of the host structure was maintained in the heterostructure with n-type doping in the hBN sublayer. Interestingly, the band alignment changed to the type-II heterostructrue as VB defect and p-type doping was introduced in the hBN sublayer. This could be profitable for the separation of photo-generated electron−hole pairs at the interfaces and is highly desired for heterostructure photocatalysis. In addition, two Z-type heterostructures including hBN(BeB)/MoS2, hBN(BeB)/MoSe2, and hBN(VN)/MoSe2 were achieved, showing reducing band gap and ideal redox potential for water splitting. Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX2 heterostructures via interfacial defects.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3