Parameter identification and state-of-charge estimation approach for enhanced lithium–ion battery equivalent circuit model considering influence of ambient temperatures*

Author:

Pang Hui,Mou Lian-Jing,Guo Long

Abstract

Abstract It is widely accepted that the variation of ambient temperature has great influence on the battery model parameters and state-of-charge (SOC) estimation, and the accurate SOC estimation is a significant issue for developing the battery management system in electric vehicles. To address this problem, in this paper we propose an enhanced equivalent circuit model (ECM) considering the influence of different ambient temperatures on the open-circuit voltage for a lithium–ion battery. Based on this model, the exponential-function fitting method is adopted to identify the battery parameters according to the test data collected from the experimental platform. And then, the extended Kalman filter (EKF) algorithm is employed to estimate the battery SOC of this battery ECM. The performance of the proposed ECM is verified by using the test profiles of hybrid pulse power characterization (HPPC) and the standard US06 driving cycles (US06) at various ambient temperatures, and by comparing with the common ECM with a second-order resistance capacitor. The simulation and experimental results show that the enhanced battery ECM can improve the battery SOC estimation accuracy under different operating conditions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3