Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors

Author:

Zhang Yilin,Mu Huimin,Cai Yuxin,Wang Xiaoyu,Zhou Kun,Tian Fuyu,Fu Yuhao,Zhang Lijun

Abstract

Open framework structures (e.g., ScF3, Sc2W3O12, etc.) exhibit significant potential for thermal expansion tailoring owing to their high atomic vibrational degrees of freedom and diverse connectivity between polyhedral units, displaying positive/negative thermal expansion (PTE/NTE) coefficients at a certain temperature. Despite the proposal of several physical mechanisms to explain the origin of NTE, an accurate mapping relationship between the structural–compositional properties and thermal expansion behavior is still lacking. This deficiency impedes the rapid evaluation of thermal expansion properties and hinders the design and development of such materials. We developed an algorithm for identifying and characterizing the connection patterns of structural units in open-framework structures and constructed a descriptor set for the thermal expansion properties of this system, which is composed of connectivity and elemental information. Our developed descriptor, aided by machine learning (ML) algorithms, can effectively learn the thermal expansion behavior in small sample datasets collected from literature-reported experimental data (246 samples). The trained model can accurately distinguish the thermal expansion behavior (PTE/NTE), achieving an accuracy of 92%. Additionally, our model predicted six new thermodynamically stable NTE materials, which were validated through first-principles calculations. Our results demonstrate that developing effective descriptors closely related to thermal expansion properties enables ML models to make accurate predictions even on small sample datasets, providing a new perspective for understanding the relationship between connectivity and thermal expansion properties in the open framework structure. The datasets that were used to support these results are available on Science Data Bank, accessible via the link https://doi.org/10.57760/sciencedb.j00113.00100.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3