Author:
Huo Chang-Fu,Yun Tiantian,Yan Xiao-Qing,Liu Zewen,Zhao Xin,Xu Wenxiong,Cui Qiannan,Liu Zhi-Bo,Tian Jian-Guo
Abstract
Rhenium diselenide (ReSe2) has gathered much attention due to its low symmetry of lattice structure, which makes it possess in-plane anisotropic optical, electrical as well as excitonic properties and further enables ReSe2 have an important application in optoelectronic devices. Here, we report the thickness-dependent exciton relaxation dynamics of mechanically exfoliated few-layer ReSe2 flakes by using time-resolved pump–probe transient transmission spectroscopies. The results reveal two thickness-dependent relaxation processes of the excitons. The fast one correlates with the exciton formation (i.e., the conversion of hot carriers to excitons), while the slow one is attributed to the exciton recombination dominated by defect-assisted exciton trapping besides photon emission channel. The decrease of scattering probability caused by defects leads to the increase of fast lifetime with thickness, and the increase of slow lifetime with thickness is related to the trap-mediated exciton depopulation induced by surface defects. Polarization-dependent transient spectroscopy indicates the isotropic exciton dynamics in the two-dimensional (2D) plane. These results are insightful for better understanding of excitonic dynamics of ReSe2 materials and its application in future optoelectronic and electronic devices.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献