Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment

Author:

Huang 黄 Guofeng 国锋,Chen 陈 Liangchao 良超,Fang 房 Chao 超

Abstract

The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure (HPHT) growth environment was systematically investigated in this work by developing three growth systems, namely, “FeNi+Ti”, “FeNi+C3N6H6”, and “FeNi+Ti+C3N6H6”. Optical microscopy, infrared spectroscopy, and photoluminescence (PL) spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems. From our analysis, it was demonstrated that the presence of hydrogen in the sp3 hybrid C–H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy (NV) center concentration in a high-nitrogen-content diamond. In addition, titanium plays an important role in nitrogen removal, while its impact on hydrogen doping within the diamond lattice is insignificant. Most importantly, by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment, the production of hydrogenous IIa-type diamond, hydrogenous Ib-type diamond, and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1 ppm to 1600 ppm.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3