Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs*

Author:

Tong Zhi-Hang,Ding Peng,Su Yong-Bo,Wang Da-Hai,Jin Zhi

Abstract

The T-gate stem height of InAlAs/InGaAs InP-based high electron mobility transistor (HEMT) is increased from 165 nm to 250 nm. The influences of increasing the gate stem height on the direct current (DC) and radio frequency (RF) performances of device are investigated. A 120-nm-long gate, 250-nm-high gate stem device exhibits a higher threshold voltage (V th) of 60 mV than a 120-nm-long gate devices with a short gate stem, caused by more Pt distributions on the gate foot edges of the high Ti/Pt/Au gate. The Pt distribution in Schottky contact metal is found to increase with the gate stem height or the gate length increasing, and thus enhancing the Schottky barrier height and expanding the gate length, which can be due to the increased internal tensile stress of Pt. The more Pt distributions for the high gate stem device also lead to more obvious Pt sinking, which reduces the distance between the gate and the InGaAs channel so that the transconductance (g m) of the high gate stem device is 70 mS/mm larger than that of the short stem device. As for the RF performances, the gate extrinsic parasitic capacitance decreases and the intrinsic transconductance increases after the gate stem height has been increased, so the RF performances of device are obviously improved. The high gate stem device yields a maximum f t of 270 GHz and f max of 460 GHz, while the short gate stem device has a maximum f t of 240 GHz and the f max of 370 GHz.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3