Author:
Wang Jinghan,Xu Tianliang,He Jingxi,Chen Kang,Tian Wende
Abstract
Inspired by the eccentricity design of self-driven disks, we propose a computational model to study the remarkable behavior of this kind of active matter via Langevin dynamics simulations. We pay attention to the effect of rotational friction coefficient and rotational noise on the phase behavior. A homogeneous system without rotational noise exhibits a sharp discontinuous transition of orientational order from an isotropic to a polar state with the increase of rotational friction coefficient. When there is rotational noise, the transition becomes continuous. The formation of polar state originates from the effective alignment effect due to the mutual coupling of the positional and orientational degrees of freedom of each disk. The rotational noise could weaken the alignment effect and cause the large spatial density inhomogeneity, while the translational noise homogenizes the system. Our model makes further conceptual progress on how the microscopic interaction among self-driven agents yields effective alignment.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献